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Abstract 2

The formallsm of the preceding paper is applied
to a calculation of the first excited states of (1) pure
crystals of Kr and Xe; and (2) rare gas solids containing
a substitutional Xe impurity. A Hartree potential for
the bare electron-hole interaction is constructed for each
system, and is screened within the random phase approxi-
mation. Matrix elements of the corresponding pseudopoten-
tials, projected according to the Cohen—Heine prescription,
are derived in the Wannier representation. Band structures

inferred from optical data are fitted to simple interpola-

tion formulae. By transformation to a symmetric representa-

tion for the envelope function, the Wannier difference
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equations are reduced to manageable form and solved by a
matrix technique. Although the calculations contain no
disposable parameters, obtained binding energies and oscil-
lator strengths are found to be in excellent agreement

with experiment.
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1. Introduction.

In the preceding paper1 the wave-packet theory of
exciton and impurity states developed by Wannier and other
workers was reviewed. It was asserted that the wave-packet
approach, which has been supposed to be valid only for

shallow states, in fact could be made to yield satisfactory

{
<,

results for deep states as well, providing that certain
microscoplc modifications of the customary macroscopic
theory were lntroduced. The purpose of this paper 1is to
examine this statement 1in detall for the simplest systems
containing deep excliton and impurity states, viz., the
solld rare gases. For these systems the calculations
turn out to be unexpectedly easy, and the results in ex-
cellent agreement with experiment. The extension of the
methods to other crystals appears to be straightforward.
We begin our presentation in section 2 with an ap-
proximate treatment of dielectric screening of the electron-
hole interaction in solid rare gases. In section 3 we
describe the construction of complete pseudopotentials
for the systems studied. Kinetlc energy terms arising
from the periodic crystal potential are discussed in sec-
tion 4, which is followed by a reduction of the Wannier
difference equations in section 5. Sections 6 and 7 con-
tain a discussion of the results and comparison with ex-

periment.




2. Dielectric Model for Isotropic Insulators.
In section 4 of I we noted that the Fourier compon-
ents Vs(q) of the self-consistent potential acting between

external charges are given by

\r{(j‘,\l = \Vlb($) E(?_,Kﬂ)) (2.

where Vb(q) 1s the Fourier transform of the bare potential.

The dielectric function neglecting local field effects 152
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for insulating crystals, where Wn and Wm are electron and

hole band energies, respectively, and
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is a transition matrix element connecting the Bloch states
5L7mk and (f)nktgf m and n are valence and conduction
band indices, respectively, and () 1s the volume of the
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unit cell. Equation (2.2) corresponds to virtual excitations

of electron-hole pairs of momentum Q'and energy

M,{-,- =W (h#jb) WM dn.) (2.
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For so0lid rare gases only the outer np valence shell need
be included in the summation on m in (2.2), since the other
shells are more tightly bound, with negligible polarizabili-
ties. Moreover, conduction band widths in the rare gases

3

are nearly equal to their free-electron values”; hence, we
may replace the 7L’nk by plane waves, as a first approxi-

mation - (comparison of the calculations of 8 (g,0 by

Penn4 and Nara5 for S1 shows that exact representation
of the nk IS not crucial). Then the matrix element
ig. u

of e L is given by the Fourier transform of an np orbi-
tal, which decreases sharply for wave vectors not contained
in the central Brillouln zone. Thus we may use a two-

band model for the polarlization, corresponding to retaining
only np —> (n+1)s atomic excitations; oscillator strengths

are adjusted to satisfy the sum ru1e6

2 kn &4—1’ e,:vi. £ [M&jagm@;k'l’i)z j-l q,l (2.5)

n 2m

With k restricted to the first zone, we obtain the approxi-

mate result

27/*162 - (2.6)
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An important characteristic of rare gas crystals is
the large energy gap between valence and conduction bands.
This has the effect of reducing the sensitivity of (2.6)
both to the shape of the bands and the approximations made

to the oscillator strengths. In addition the valence elec-

ct

tron overiap 1s small, so that the valence bands have small

width. For our purposes it 1s sufficient to represent the

palr excitation energies by a free electron model with a

large "zero of the energy". Thus we may write
£2 2
En(kktq) = E; + 35— (ktq) (2.7)

where E, 1s the band gap. Substituting (2.7) into (2.6),

we obtain

o) 12 ] o

where kg = 2mEG/‘1‘52 . In terms of the static dielectric

constant i;o the isotropic part of E:(gp) is given by

»‘EG;D) = | +(io*l)2(7)/2(0) (2.9)

where

Yk -1 K-9\ k., g [(keg) 4 ko
2tk ) ) ey s




Here K is the average "radius" of the Brillouin zone, given

by

2 -50/n
Equation (2.9) is shown in Fig. 1 as a function of wave num-
ber q for Ar; similar results are obtained for the other
rare gases.

Our model for an isotropic insulator differs some-
what from Penn's model for an isotropic semiconductorq.
The values obtained from his interpolation formula (with
the parameters adjusted to Ar) are also shown in Fig. 1.
In both models & —»1 when g —» o, while T— &,
as q —p 0. Consequently there 1s no screening of the elec-
tron-hole interaction for r = O, while % (r)— ¢ o, for
large r, in agreement with macroscopic considerations7.
The scale of the breakdown region in real space may be de-

termined from the definition of ii(r):

| 651 5 ¢J | u}h{ ) i;i.jf ( )

—_— & - g —_— e, 2.10
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where a}«(i) - 6;7—&.‘1/7 2

1s the Fourler transform of the Coulomb potential and P denotes

the principle part. In order to simplify the integration
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of (2.10) we replace (2.9) by the simpler function

Fq) = | + @;') JQK’/(?LwéZK”) J

C{ is chosen to provide a good fit to i&(q,o) and is of
order unity for the rare gases. After a trivial contour
integration we find the result

- L é*__.'l ex((—@")

;(-r_)— go Z, (2.11)

where Q = T ]6/20< K. We note that because EG is iarge

the breakdown length Qfl is less than the atomlic radius.
Then i:(r) may be replaced by E:o outside the central cell.
Within the core region of the "impurity" the simple RPA re-
sult is not expected to be valid. On the other hand, the
excited electron has almost no amplitude in the region since
it must be orthogonal to the core levels (cf. I, section 3).
Thus, local fleld effects can be neglected, and we may write

for all r
v (r-R,) = Vo (z-R,) € (r) (2.12)

where VB(;:Ei) is the unscreened potential.



3. Impurity Potentials.
Exciton and lmpurity states satisfy a generalized

impurity equation (See I, section 2)

(K, + V'(z-R,)) }/’L r-R,) = E ‘fu-a ) (3.1)

where KO has full crystal symmetry and V' is an appropriate
impurity potential centered about.ﬁi.

By working in a representation based on the smooth
part of %’(See I, section 3), we found that (3.1) could

be rewritten as

(<€, + v, (z2)) P leny) = 5 Pleny) (3.2)

where Kgs is the pseudopotential kinetic energy operator
for the perfect crystal and V'pS is the "impurity pseudo-

potential®. The smooth function ?p:is given by

fe P 7 H O

in terms of the core functions ¢t. Because V'pS is small
in the cores, interband matrix elements are sharply reduced,
so that a one-band approximation for ?Ois possible. 1In

terms of Wanniler functionsC(rﬁ{derived from Kgs’ we may write
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qﬂ(f'@"):%l'ir(@) OC“ @(':'@”‘) (3.4)

where n denotes the . first conduction band. Inserting (3.4%)
into (3.2) we have
4 |
ZGWRR)-ES + VRRY[FRY= o 59
R’ - -

-

where

—~~

N
(o)

~—r

(o]
W(E-R') = (nRIE InR')

and

Vi) - Rlvy, ey

are matrix elements of the crystal and impurity pseudopotentials
in the c(V—representation. The model Wannier equation (3.5)
are the fundamental equations we wish to solve. The method
of solution consists of three steps: (1) we construct a
pseudopotential for each system, (2) we compute the matrix
elements (3.6), and (3) we solve the secular equation

det|[ W(R-R') -Edpp, + V(R,R')]| =0 (3.7)

.
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the model amplitude functions F(R) are determined from (3.5).
Let us now turn to the calculation of the pseudopotentials.
The impurity potential for a crystal containing a

positively charged ion at_li_i is

Vv (z-By) = V, (z-R,) - V. (2-R,) (3.8)

-
——n =)
.

where V is the screened potential of the ion and V.

host
is the potential of a neutral host atom. The analogous

ion

potential for exciton states was derived in I. Because of
the tight binding of rare gas atoms we neglect the motion
of the hole; then the exciton potential may also be written
in the form (3.8). Vgs is given by the Cohen-Heine pres-

criptionB:

A AR B X @ NI AR (3.9)

Because ?9 is slowly varying in the core region we make the

local approximation

V= Vo -3 by (017, ) (3.10)
VO + Vﬁ

it

A convenient prescription for including polarization effects

in the impurity potential was given in section 2 in terms
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of a bare potential Vb(r) and a dielectric constant fz(rﬁ.

We construct a Hartree potential for Vb:

Vb(I') = uion(r) - uhOSt(r) (3-11)

\ /} 2
u&r) L Z'e2 + 82 Zi[;izy |¢é1)(£)‘l (3.128,)
on = r s fr-r'|
and
0),.48. 2
u(r) = - Zge” | o2 z/d_g' N’é ) (z): | (3.12b)
host T 5 [z-r7]

are lonic and atomic potentials, neglecting exchange and
polarization effects. ZO and Z, denote the atomic number

of the host and impurity atoms, while ¢éo) and ¢é1) are the
corresponding core orbitals taken from free atom calculations9.
One np orbital is deleted from the sum in (3.12a) so that
uionfv r-l for large r. The self-consistent potential VO
was derived from equation (2.12) for each system, and pseudo-
potentials Vgs were calculated from (3.10). The unscreened
pseudopotential for excitonsin Xe is shown 1in Fig. 2, along
with the hydrogenic potential

2
vyt (r) == = (3.13)
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As we expected (cf. I) V;S is greatly reduced in the core
region, and approaches the Coulomb law (3.13) outside the
cores (the addition of dielectric screening modifies Vgs
someﬁhat). Similar results were found for the other systems.
Before we can solve (3.7) we must compute matrix ele-
ments of Vﬁs in the & ~representation. According to I we

have

o o = N 1/2 B (3.14)

whereszynk, the smooth part of a Bloch funtion ;Z;nk’ is an

eigenfunction of Kgs:

K2 ?ﬁn_}‘g(g:) = W_(x) q’n}f(a) (3.15)

Because the band structure Wnﬁg) is approximately given by
a free-electron formula3 we may approximate ﬁﬂ;k by a plane

wave
? = V-l/2 exp(i k-r) (3.16)
nk PAL XL )

(This will not be true of %nk, which must contain an ad-
mixture of core functions). We calculate (3.14%) by approxi-

mating the first Brillouin zone by a sphere of the same volume
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(Wigner-Seitz approximation). This leads easily to the re-

sult

; (3.17) is spherically symmetric about r = R.

We are now in a position to cqlculate the potential
energy terms in the difference equations. According to
equations (3.6) these are given by

*

V(BE') = [ar o p(r) Vo (2) oy (2) (3.18)

Because of the orthogonality of Wannier functions centered
about different sites, off-diagonal elements of V(EAB') are
small for large R, and will be neglected. 1In addition, the
diagonal elements must approach the hydrogenic formula
-e2/goR for R sufficiently large that V;S may be assumed
constant over a unit cell.

There are three matrix elements for which the continuum

approximation

(RIvIR1) = (2R ) S, (3.19)
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is not suitable. These are

(1) The one-center term <fO|V£S|()j> (diagonal cen-
tral cell correction);

(2) The two-center nearest neighbor charge-transfer

term <o]vr')s|d> , and
(3) The dipolar nearest neighbor term <d!‘!}‘)sld> .

Values of these matrix elements are given in table I for

V = V%S = VO + Vﬁ. Also shown are values of these gquanti-
ties computed without orthogonality corrections (V = Vo),
along with values of ee/iiod. We note that all matrix ele-
ments are substantially reduced by the inclusion of VR in
the impurity potential, and that the reduction is greatest
when the size disparity between impurity and host atoms 1s
greatest (Xe in Ne). These "excluded volume effects” will

be shown below to play a dominant role in interpreting the

observed trends in binding energies and oscillator strengths.

4, Interband Kinetic Energy.
The kinetic energy terms W(R-R') of equation (3.5)
are, in terms of the band structure of the host lattice,

W(E-ER') = N3 [0 (k) - Wy(k)] et K (EEY) (4.1)
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where wn(g) and Wm(g) are band structures frrthe electron
and hole respectively (we set wm(g) equal to a constant for
impurity states or trapped excitons) and the k-space sum is
restricted to the first Brillouin zone. In figure 3 we show
the band structure of solid Xe as inferred3 from Baldini's
optical data. The important features are the flat valence
bands, the wide conduction band, and the large spin-orbit
splitting in the valence bands. In order to simplify the

calculation of W(R-R') we employ an interpolation model for

the band structure:

wn(g) - Wm(}i) = E, + ;L[r -cos (325(— cos (-?é)

-cos éfgz) cos(fgg) ‘CDS(E;I) cos(fgg) (4.2)

where a is the lattice parameter, ECT the energy gap and EL

the band width at L.

According to Phillips' nearly free electron model
10

for the conduction bands,
E, = Ef(L) - sL/e

= 2h22 - 8./2 (4.3)
8ma

where Ef(k) =‘ﬁ2k2/2m and SL is the nearly free electron
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splitting of the L, and L,,

determined spectroscopically is 1.4 eV, so that EL

levels. In Xe Ef(L) is 2.9 eV

and SL

is 2.2 eV. Spectroscopic data to determine S, are not avail-

L
able for Ne, Ar or Kr.

| To determine SL in these crystals we make use of the
chemical trends in s-p spiittings which are manifested in
several ways. In the alkali metals11 the s-p splitting at k,=
N decreases from Li to Cs, revbersing sign between Na and

K. Also 1ow—enerey electron scattering from rare gas atoms

is= characterized12

by the lengths fo shown 1in Table fI.
Again a sign reversal occurs, and in the atoms adjacent to
those for which the alkali s-p splitting reverses sign.

Thus we assume that S, vanishes for Ne and interpolate lin-

L
early between Ne and Xe to obtain the Ar and Kr values also
shown in Table II. Note that although (4.2) has the form
of a tight-binding expansion, the parameter EL is deter-
mined primarily by Ef(L), as can be seen in Table II, and
not by interatomic overlap integrals.

The tight-binding form assumed for (4.2) reduces near
k = 0 to const. + E_(ka)?/12 or const. + (ﬁk)2/2/4, with
/u,/m listed in Table II. These values of/ﬁk /m disagree
significantly with the continuum values of/b&,*/m deduced
13

by Baldini from a hydrogenic model of the n = 2,3 levels.

It is evident that our single parameter EL cannot reproduce
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* -
both the band width and (/ﬁu ) 1, the curvature near k = O,
correctly. A correction is made for this deficiency in the

calculatlions discussed later.

5. Reduction of Wannlier Equations.

it is convenient to transform to a representation
based on symmetrized linear combinations of theCK{nR. Any
two of the transformed basis functions have vanishi;é matrix
elements coupling them unless both functions have the same
symmetry under an appropriate subgroup of the point group
of the crystal; thus the secular equatlion may be factorized
into sets of equations having lower dimensionalities. The
correct symmetry group may be determined from inspection
of the Wannier equations (3.5). Each interband edge may
generate bound states; 1f the interband edge is degenerate
(as in many-valley semiconductors), supermultiplets will
be formed which will exhibit a so-called valley-orbit split-
ting consistent with that subgroup of the full point group
which interchanges the band edges.

Fortunately in rare gas solids by neglecting the val-
ence band width we can deal with a non-degenerate interband
edge at k = r7 = 0 for both excitons and impurities. We
are interested only 1n s exciton states because the transi-

tion —_> ri is dipole allowed. Similarly for the

15
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impurity states we calculate only s states and assume that
ns and np states of the impurity are degenerate, so that
1s —> np excltation energies can be obtained from a know-
ledge of the positions of the s levels alone.

The s states are the totally symmetric linear com-

binations‘x's of the Wannier functions C(R :

- - Y (5.1)
“53(.0- M, 12 oégs(‘”) 5

-

where the sum 1is over lattice vector belonging to the sth

"star" containing Ny members, and we have

CP(_F‘E 7 G /X((',a') (5.2)
where Gg = ‘d;i; F‘(IBSl)

It is easy to show that the transformation (5.1) is unitary.

Equations (3.5) are replaced by

28551950 = EGg (5.3)
where Hqqy = Wgq: + Vgq with the definitions
-1/2
Waq, = (NoNg,) b W(Rq - Rqy) (5.4a)
SSt S S? ES&S' S S
v - (NN, )2 s V(ResRe ) (5.4Db)
SS! SUst/ RqRqy , =875 ’
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In this " ')(-representation" we have one basic function

for each distinct star of lattice vectors, and the dimensiona-
lity of the secular equation 1s reduced by a factor of about

20. An expansion of ?9 out to 30 or 40 shells is now possible,
so that this formalism is appropriate to the study of "inter-
mediate" excitons (e.g., in alkali halides and rare gas solids).
Recalling the identity |

it 1s easy to show that

W Z

SS' = S" AS" Rsﬁs’gsn ES“ BS-&' (5.5)

where AS is defined in the expansion

Wh(‘f)*wm('f) - 2 As Ns_bZeiB'& (5-6)
S RS

The expansion (5.9) is always possible because of the con-
tinuity and cubic symmetry of (wn-wm). In our tight-binding
model there are only two non-vanishing coefficients AS’ rep-
resenting the energy gap and the band width. Equation (5.8)
for the kinetlic energy terms 1s convenient because it con-
talns no k-space integration (see equation (4.1)). As be-
fore, the energy gap appears only along the diagonal (S = S!')

and may be set equal to zero; then wSS' is linear in EL
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(the lattice sums in (5.8) depend only upon crystal symmetry).
Since EL decreases with increasing atomic number, the density
of states at the interband edge increases with Z, which in
turn has the effect of enhancing binding energiles for large

Z. This trend, however, 1s reversed by the Z-dependence of

i o? which ianrea.seslB’y+

from 1.1 for Ne to 2.23 for Xe.
6. Excitons in Xe and Kr.

We are now in a position to solve the Wannier difference
equations (3.5) using both a realistic band structure and
an interactién which include three corrections to the hydro-
genic problem:

(1) Breakdown of macroscoplc dielectric screening
in the central cell (DB),

(2) Non-parabolic energy bands (XE), and

(3) Repulsive terms in the central cell (R).

Corrections (1) and (2) were previously considered by Kohn

and Luttinger15

;3 when m*/m<<1 both corrections produce nega-
tive shifts of the 1s energles below their hydrogenic values.
Correction (3) arises from the orthogonality terms discussed
in the preceding paper.

Before solving the difference equations carefully we

wish to 1llustrate the relative magnitude of these three

terms by solving a model differential equation, treating
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these effects by first-order perturbation theory. We know
that for the exciton states the hydrogenic model works very
well. Our unperturbed wave function is therefore the hydro-

13,

genic 1ls state described by Baldini

3
L{,SU)r(_&\/"L ﬁ‘r/a" (6.1)

/ Ay /
4 2 €
where ay = ) ( *7m ) is the first Bohr radius according

me-
to the effective mass approximatioan (EMA). We construct

a model Hamiltonlan which contains, in a gqualitative way,

the effects due to DB, KE, and R:

HM = KM +Vﬁ (6.2)
The kinetic energy operator

2 1\ m 2 _ % n (6.3)
Kkv="%m -2 /klr) 4 4 /uir)
*
contains the effects of large-k variation of /A ;‘/L (r)
is a radially-depehdent effective mass described below. Cor-
rections due to dielectric breakdown and repulsive terms

in the central cell are contained in a model potential

v = éei . [r 1- G(r-ro):] . (6.4)
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Except for the radial dependence of the dielectric con-
stant, Vﬁ is a hydrogenic potential for r > rQ; we assume
that cancellation between V! and Vk is exact for r < L
the radius of the "excluded volume".

Interpolation formulae were constructed for the radial

o
4
0
£
¢
[
fo
o

09
oY
g
®
(@]
5]
H
H
o
[¢]
t

dependences of /ﬁ&(r) and ¢g{r). Th
limiting behavior for r —> ® and r —» O, with exponential
interpolation between the 1limits, characterized by decay

factors which scale with the lattice constant. Variation

of the dielectric constant was chosen to be of the form

1 = 1 +( Co=1Y) exp (-qr) (6.5)
g (T) <, €o

where Q = Ky is the Ferml wave number. Note that T (r)
approaches 1 for small r and ‘E‘O for large r, and that
Q,_1 plays the role of a characteristic breakdown length for
an insulator. Qualiltatively the variation of effective mass
(in real space) can be described in terms of/‘k*, the macro-

scopic (k —»0) effective mass, by

m = _m -/ m -1 exp —r/ail . (6.6)
plrl M
For small r,//Lr(r) tends to the free electron value m, whereas

*
/u‘ (r)-$>p¢ as r—> oo. Note that r = a 1s assoclated
with wave number k = Eagg s 8O0 that a-l is a characteristic
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decay factor for the effective mass. The pertinent micro-
scopic quantities Q and a~l are given in Table III. Also
shown 1s a third parameter'Q{ = rO/A the equivalent radius
of the excluded volume according to first-order perturbation
theory, relative to the atomic radius A (see equation (6.4)).
With the above interpolation formulae the model Hamil-

tonian (6.2) can be written as

Hy = Hgyp + Heg (6.7)

where H

A = *V - £ is the macroscopic Hamil-

Hia=V + V.

contalns the central cell corrections. Here

Vg = -CE?;‘{) ‘%3 I:l - e(r-ro):]exp [-Qr] (6.8a)

represents dielectric breakdown for r > r, and vanishes for

rrg; corrections for the non-parabolic nature of the energy
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bands are contained in the term

2
Veg = - %T (Ifn-;; -1)\ _exp(-r/a)y 2 + p “exp(-r/a)
2
(6.8b)
and
2

V = ¢ 8 (r-r ) (6.8¢c)
'R T T °

is the effective (local) repulsive potential.
We are now in position to calculate the first-order
corrections to the hydrogenic theory. According to the Kohn-

Luttinger model the energy shift 1315

AEyy, = <VDB> + <VKE> (6.9)

whereas according to the theory of the preceding paper,

AE = <VDB> + <VKE> + <VR> . (6.10)
The calculated shifts <VDB> , (VKE> and <VR>

are glven in Table IV, along with AEKL and the total shift
AE, for 1ls excitons in Kr and Xe. The experimental shifts

are presented in the same table. We see that the positive
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contribution, { Vz) , 1s large, and that in spite of con-
siderable cancellation the predicted shifts agree in sign
wlth the rather small hydrogenic defects for both crystals.
Thus, the unexpected success of the EMA for excitons in Kr
and Xe 1s due to the substantial cancellation between central
cell corrections.

We expect generally that the hydrogenic theory will
be useful for deep exciton states in other filled-shell in-
sulators such as alkall halides. For deep impurity states
(e.g. Xe in Ar) the above cancellation may not be so com-
plete because the potentlial of the impurity ion differs
significantly from that of an ionized atom of the host
crystal. Thus, because the Xe ion is larger than an Ar atom
the excluded volume correction <:YR7> outwelghs the nega-
tive corrections <VKE> and <VDB> » which are only

slightly changed by the replacement of an Ar ion by a Xe
ion, and the hydrogenic defect 1s large and positivellf’17
In semiconductors, on the other hand, the valence shell is
only half-filled and the excluded volume associlated with
the core is small. Thus (cf. I) the 1s donor binding en-
ergies are larger than the EMA result.

The model calculation has shown the relative magnitude

of DB, KE, and R corrections to the macroscopic theory, and

has led to a qualitative understanding of the success of
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the EMA. However, the use of a differential equation to rep-

a ~~J

resent the Wannlier equations 1s not valid for Ej)z < 1;18
in the calculation of deep states the finite spr

ad of the
Wannier function must be taken into account. We saw in
section 3, for example, that certaln two-center corrections
are not negligible, and that calculated matrix elements dif-
fer significantly from-ee/iioR for R s'd, the nearest neighbor
destance. Consequently we must solve the Wannier equations
(5.3); we do this by truncating and solving the secular
equation. In the remalnder of this section we present the
results of calculations of 1ls excitons in Kr and Xej calcu-
lations of deep impurity states of Xe in Ne, Ar and Kr will
be summarized in section 7.

Before solving the difference equations we recall
that exciton states with n > 2 will not be given correctly
by the solutions, because the curvature of our model energy
bands 1s given incorrectly near k = O (cf. section 4).

Since the 1s state will be orthogonal to these higher states,
it 1s desirable to modify the equations in such a way that
they are given correctly. We do this by renormalizing the
macroscopic potential terms (3.19): we replace‘{)o by

Eié = (/Mrl/hf)l/eii o (~ 1.3 € o for Kr and Xe); for

R < d large-k behavior of the energy bands 1s important,

Va4
and we retain the matrix elements of Vﬁs listed in Table I.
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The calculations show that the effective Bohr radius for

ls states 1s less than d, so that the replacement Z o Eé
results only in slight modifications of the "tall" of the
wave function.

Calculated hydrogenic defects for 1s excltons in Kr
and Xe are listed in Table V. For comparison we list the
defects obtalned by neglecting the repulsive term Vh in
the same table. The agreement between calculated and ob-
served defects 1s excellent for the pseudopotential theory
(V = v, o+ Vﬁ); the agreement 1is poor for V = V,. Again,
the occurrence of small defects 1s seen to be a consequence
of the orthogonality requirement; the Schmidt terms in the
impurity function (r-R; ) correspond to a large, positive
kinetic energy which cancels the negative corrections
(DB and KE).

The convergence of these results with respect to the
number of basils functions 1is indicated in Figure 4 for Xe.
Rc 1s the cut-off radius for the expansion of the model wave
function <?91n terms of Wannier functions. We note that
the 1s energy has converged at Rccx 3d, while the larger 2s
state must be expanded out to R, & 6d (40 shells) before
convergence 1s indicated; the 2s energy appears to converge
toward the experimental value of -0.23 eV.

Calculated 1s envelope functions are shown in Figures

6 and 7, along with the EMA function (6.1). Once again the
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repulsive term Vh plays a fundamental role in the pesult;
comparison of wave functions A(V = v, o+ VR) and B(V = Vb)
1llustrates the reduction of amplitude in the central cell
brought about by the repulsive term VR. In addition to dimini-
shing the binding energy, this effect lowers the oscillator

strength19

Frs ~ 1P (0)1P (6.12)

In Table VI we list the ratio r = fls/fzs calculated from
(5.3) and (6.12) (Rc = 6d) and compare with the hydrogenic
prediction and experimentlB. Because Vp reduces~Eés(O) as
well as EES(O) the calculated ratio of oscillator strengths
is nearly given by the EMA result. Agreement of the calcu-
lated ratio and experiment is excellent for Xe but not for
Kr; in the latter case the experimental ratio 1s less certain

because of greater lifetime broadening.

T. Deep Impurity States.

14,17 on the first

- The avallabllity of optical data
excited states of a substitutlonal Xe impurity in crystals
of Ne, Ar and Kr makes it possible to study the dependence
of exclton binding on the macroscopic parameters E:o and/tb*.

For n > 2 thils dependence 1s glven by the hydrogenic formula
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because the effective Bohr radiil for these states are large
compared with the atomic radius. For n = 1, on the other
hand, there 1s only a weak dependence of binding energy on
€, and /,u*, indicating that the wave function is confined
to the neighborhood of the Xe impurity. Thus it is important
that these deep states be calculated from the microscopic
theory developed above; in this section we present the re-
sults of this calculation.

Hydrogenic defects of the first excited state (1s)
of Xe were calculated for the systems (I) Xe in Ne, (II)
Xe in Ar, (III) Xe in Kr, and (IV) pure Xe (cf. section 6).
The results shown in Fig. 7 are plotted against the EMA
binding energy ]EH(ls)l and are normalized by the same
factor. Comparison of curves A(V = v, o+ VR) and B(V = Vo)
shows once again the crucial role played by the repulsive
terms in the central cell. The agreement between the pseudo-
potential theory (curve A) and experiment is excellent over
the entire range of interaction strength, from pure Xe, where
IEH(ls)I = 0.86 eV, to Xe in Ne, where IEH(ls)I = 2.59 eV.

As expected (cf. section 6) the repulsive term out-
welghs the negative corrections to the EMA in I, II, and III,
and large positive defects are observed; in IV the cancel-
lation between central cell corrections 1s nearly exact.

The influence of the repulsive terms can be more

clearly seen in the envelope functions. Solutions of the
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difference equations for the 1s states are given in Figures
8 and 9. In both figures, the amplitude at the nearest
neighbor site indicated by dJ increases relative to the
amplitude at the origin as {:o decreases (i.e., as the
interaction strength outside the central cell increases).
In Figure 8 (V = Vb) all systems except I show enhanced
amplitude at R = 0 relative tb the hydrogenic value, be-
cause of DB and KE (negative) corrections to the binding
energy. Figure 9 includes the effects of the repulsive
term Vp in addition to the above corrections; Flgo) is de-
pressed compared to the hydrogenic value in all cases. Be-
cause of the latter reduction we expect the oscillator
strength ratio o = fls/f2S to be less than the hydro-
genic value (8:1) and that this ratio will increase with
the atomic number of the host (i.e., as Fls(o) increases).
Values of r computed from equation (6.12) using solutions
of the Wannier equations for Rc = 6d are given in Figure 10,
together with values of this quantity estimated from the
optical data by comparing the area under the absorption
peaks fér n=1and n= 2. Agreement between our pseudo-
potential theory and experiment is excellent for all cases.
As expected, the reduction of r from the hydrogenic result
i1s greatest for case I (Xe in Ne) where the ratio of im-

purity "volume" to the atomic volume of the host 1is largest.
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8. Discussion.

We have applied the pseudopotential theory of exciton
and impurity states developed in I to a calculation of (1)
1s excitons in Kr and Xe, and (2) 1s states of a Xe impurity
in Ne, Ar and Kr. Three corrections to the hydrogenic theory
were considered: (a) dielectric breakdown, (b) large-k vari-
ation of the effective mass, and (c) repulsive terms in the
central cell, representing core parts of the impurity function.
To determine the relative magnitude of each effect a model
Hamiltonian based on simple interpolation formulae was con-
structed. First-order corrections to the hydrogenic theory
were calculated; the total energy shifts agreed in sign with
the experimental shifts. Because each contribution (a) - (c)
could be evaluated separately it was possible to obtain a
qualitative understanding of the remarkable success of the
effective mass approximation for excitons in Kr and Xe.
Specifically, it was shown that the positive correction due
to the effective repulsive potential cancels the negative
contributions (a) and (b) to a large extent, with the re-
sult that the hydrogenic defect is small.

In order to verify the results of the model calculation
the Wannier difference equations were solved by a matrix
technique. The calculated binding energies and oscillator

strengths were in excellent agreement with experiment in
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all cases. To our knowledge this is the first time that

the Wannier wave-packet approach has been shown to yleld
good results for deep states in insulating crystals. From
our results one may conclude that the neglect of exchange
and local field corrections to the electron-hole interaction
is Justified, and non-local terms in the exciton Hamiltonian
may be neglected. Finally, the representation of the energy
bands by our simple interpolation formula does not produce
serious errors. (With additional computational effort and
at the expense of simplicity it would be possible to improve
further the treatment of the kinetic energy terms.) Thus,
if we were to choose a smaller bandwidth for Ar or Kr (as

Matthelss' APW calculationsao

have suggested) the enhanced
density of states at the interband threshold would lead to
stronger binding and, consequently, better agreement with
experiment. We note that our calculations for Xe and Ne,
for which the band structure is more certain (cf. section 4),
are 1n essentially exact agreement with experiment--even
the anomalous oscillator strength ratio  for Ne (2:1 rather
than 8:1) is given correctly.

The success of our calculations for parabolic excitons
indicates that the electron-hole potential we constructed
is good over the entire range of r. Thus we are 1n a posi-
tion to calculate excitons derived from higher conduction

21,22

bands as well as scattering resonances associated with
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critical points in the interband density of states that lie
above the fundamental edge. Phillips23 has suggested that
peak structure observed in the insulators above threshold
may often be interpreted in terms of such resonances. Cal-
culations based on this suggestion are being carried out by
the author.

Extension of the methods of this paper to the alkali
halides 1s straightforward. The conduction bands of the
two systems are similar, so that the treatment of kinetic
energy terms needs only slight modification (viz., inclusion
of a width for the halide valence bands). From the results
of this paper oné would anticlpate that exciton states in
the alkali halides sﬂould follow a hydrogenic pattern,
especially in those crystals, such as KBr, RbBr, KI, and
RbI, whose bands closely resemble those of the solid rare

gaseslo.




Fig. 1.

Fig. 2.

Fig. 3.
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FIGURE CAPTIONS

Dieléctric function of Argon (atomic units).
The solid line is our model for an isotropic
insulator, based on a parabolic excitation
spectrum. For purposes of comparison, Penn's
model for an isotropic semiconductor is shown
by the dashed line (based on parameters ap-
propriate to Ar). The "breakdown length"

ch for the insulator dielectric function is

less than the atomic radius of Ar (3.55 a.u.).

Unscreened pseudopotential for excitons in Xe.
The solid curve was obtained from the Hartree
potential by the projection technique of Cohen
and Heine. —x'= ro/a measures an average radius
TS of the excluded volume relative to the atomic
radius a. The value of T, 1s defined by the

requirement that the average of the pseudo-

potential from O to TS be zero.

Band structure of Xe, as inferred from optical
data. The double-group notation is used for
the valence bands, the single-group for the

conduction bands.
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Figure Captions (continued)

Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Convergence of exciton energies for Xe. Rc is
the cut-off radius defined in the text. The
observed energies of the 1ls and 2s states are
given by the dashed lines A. and B. For Rc-—e ®

a rydberg series for n > 2 is expected.

Envelope function for 1s exciton in Kr. The
hydrogenic envelope function is given by the
dashed line. The solid curves are solutions

of the difference equations for n = 1. Curve

A includes the effects of the repulsive potential
while curve B does not. The nearest-neighbor

distance 1s 4.

Envelope function for 1ls exciton in Xe. The

notation is the same as Figure 5.

Relative hydrogenic defects of the 1s state of

a Xe impurity in various host laﬁtices. The
abcissa is IEH(ls)I, the hydrogenic binding energy,
which 1s a measure of the strength of the electron-
hole coupling neglecting central cell correctilons.
Experimental defects are Joined by the dashed

line; theoretical curve A passes close to the

experimental shifts. Curve B indicates the re-
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Fig. 7. (continued)

Fig. 8.

Fig. 9.

Fig. 10.

sults obtalned without the repolsive potential
VR. The agreement between theory and experi-
ment is qualitatively poor for curve B, which
prediéts that the hydrogenic defect is always

negative.

Envelope function for the 1ls state of a Xe im-
purity in various rare gas host lattices. Or-
thogonality corrections to the impurity potential
were neglected (V = Vo) in these calculations.
The dashed line 1s the hydrogenic envelope
function for the 1ls exciton 1n Xe.and dJ is

the nearest-neighbor distance 1in the Jth system.

Envelope function for the 1ls state of Xe in
various host lattices, calculated wlth the
i 1 -
pseudopotential V = Vbs = V0 + Vﬁ. Note that
the central cell amplitude is reduced from Fig. 8,

due to the repulsive term Vh.

Oscilllator strength ratio for a Xe impurity in
several rare gas environments. r =(fls/f28)is
given by the ratio of central cell amplitudes

forn=1and n= 2. According to the hydrogenic
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Fig. 10. (continued)

theory r has the constant value 8.0 independent

of environment. Curve A was obtalned by solving

R
and the experimental results are given by the

the Wannler equations wlth V = V;s = Vb + V.,

dashed line. The disagreement between theory
and experiment for Xe in Ar and Xe 1n Kr is
thought to be due primarily to uncertainties
in the band structures assumed for these

crystals.




Table I.

Table II.

Table III.

Table IV.
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TABLE CAPTIONS

Matrix elements of the potential in eV between
Wannler functions either in the central cell,
l0>, or the nearest nelghbor, ld}. The primary
numbers refer to the pseudopotential, whereas
the numbers in parentheses refer to the crystal
potential (Vh = 0). For comparison the magni-
tude of the screened Coulomb potential at'the
nearest neighbor sites 1s shown in the last

column.

Microscoplc parameters used to determine chemical
shifts in conduction band models for the family

of rare gas solids.

Microscopic parameters for Kr and Xe (atomic

units) in simplified guasi-hydrogenic model.

Energy shifts of 1s excitons in Kr and Xe (in

units of-IEH(ls),= ’&Zg)ia ) as computed from
2ggh

simplified model. The terms <VDB> s <VKE>

and <VR> are defined in the text. The sum

of the first two gives an estimate AEKL of the

hydrogenic defect according to the Kohn-Luttinger

methods (ref. 16). The sum of all three terms

gives AE. The relative hydrogenic defects
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Table IV. (continued).

Table V.

Table VI.

observed experimentally are given in column 6.

Hydrogenic defects of 1ls excitons in Kr and Xe
obtained from the Wannler equations relative

to {EH(ls)l. The first column contains results
for Vﬁ = 0. Results obtalined with the pseudo-
potential Vgs = Vo + VR are given in column two,

and the experimental results are listed in

column three.

Oscillator strength ratio r = fls/f28 for excitons
in Xr and Xe. The first column contains the
hydrogenic value, and columns two and three con-
tain results obtained from the Wannier difference
equation for V = VO and V = Vb + VR, respectively.
The last column lists values of r deduced by

Baldini.
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System <o|v|o> <O|V|d> <d|V|d> ‘ee/iod

Xe in Ne -1.03 -0.01 -3.34
~4.12

(-4.47) (-0.24) (-4.16)

Xe in Ar -1.28 -0.13 -1.98
-2.31

(-3.75) (-0.30) (-2.78)

Xe in Kr -1.38 -0.15 -1.74
-1.99

(-3.51) (-0.28) (-2.46)

pure Xe -1.43 -0.15 -1.25
-1.47

(-3.17) (-0.27) (-1.89)

pure Kr -2.18 -0.225 -1.84
-1.99

(-4.24) (-0.35) (-2.57)

Table I.
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Element fo(a.u.) SL(eV) EL(eV) (fp*/m)x Sﬁ‘/m)y
He 1.19 ~-- -- -- -
Ne 0.24 ) 5.6 - 0.40
Ar -1.70 0.4 3.8 0.46 0.43
Kr -3.7 0.8 3.1 0.41 0.46
Xe -6.5 1.4 2.2 0.31 0.54

X Deduced by Baldini from rydberg serles for n > 2.

Y From curvature of our model W(k) near k = O.

Table IT.
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-1

Crystal Q(DB) a(KE) ’K’: r./A (R)
Kr 0.6 .09% 0.80
Xe 0.5 .086 0.86

Table III.
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Crystal (Vg Y { Vg > {Vry ABy L AE AR,

Kr -0.06 -0.55 +0.92 -0.61 +0.31 +0.13

Xe -0.07 -0.51 +0.53 -0.58 -0.05 -0.07

Table IV.
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Crystal AE(V = v,) AE(V = VO+VR) AE(exp)
Kr -0.80 +40.15 40.13
Xe -1.76 -0.09 -0.07

Table V.
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Crystal r(EMA) r(V = Vo) r(V = Vo+VB) r(exp)
Kr 8 10.7 -8.0 4.0
Xe 8 11.0 9.0 9.0

Table VI.




b7
REFERENCES

1. J. Hermanson and J. C. Phillips (l)receding paper),
referred to as I in this paper.
2. N. Wiser, Phys. Rev. 129, 62 (1963).
. J. C. Phillips, Phys. Rev. lzé, A1T714 (1964).
. D. R. Penn, Phys. Rev. 128, 2093 (1962).

3

y

5. H. Nara, Phys. Soc. Jap. 20, 778 (1965).

6. P. Nozieres and D. Pines, Phys. Rev. 109, 741 (1958).

7. W. Kohn, Phys. Rev. 110, 857 (1958).

8. M. H. Cohen and V. Helne, Phys. Rev. 122, 1821
(1961).

g. F. Herman and S. Skillman, Atomic Structure Calculations

(Prentice-Hall, Inc. 1963).
10. J. C. Phillips, Phys. Rev. 136, A1705 (1964).
11. N. Ashcroft, Phys. Rev. 140, A935 (1965).
12. T. F. O'Malley, Phys. Rev. 130, 1020 (1963).
13. G. Baldini, Phys. Rev. 128, 1562 (1962).
14.  G. Baldini, Phys. Rev. 137, A508 (1965).
15. W. Kohn and J. M. ILuttinger 98, 915 (1955).
16. W. Kohn, SSP 5, 257 (1957).
17. G. Baldini and R. S. Knox, Phys. Rev. Letters 11,
127 (1963).
18. E. N. Adams, Phys. Rev. 85, 41 (1952).




48

References (continued)

19. R. J. Elliott, Phys. Rev. 108, 1384 (1957).
20. L. F. Mattheiss, Phys. Rev. 133, A1399 (1964).
21. A. W. Overhauser, Phys. Rev. 101, 1702 (1956).
22. R. S. Knox and N. Inchauspe, Phys. Rev. 116,

1093 (1959).
23. J. C. Phillips, Phys. Rev. Letters 12, 142 (1964).




10}ONPUOdIWSS [3PON
lojp|nsu| |9pow

| _




{o

A

(peyoouna])
joljuejod d1uebospAHy ----

joyjusjodopnesd ——

(SHun SWOD) (A4 =2



16

14

] Xe (
LZ* L-S X-','
T .
Leu X'G'u
L§| P|5 xgl
L=(l) I'=(000) (200)=X

F'ig. 3



# Shells
5 10 20 40
o 1 I
_ Theory(v--\lo*\()i
——=— Experiment
A:ls |

B:2s
4s
3s




¢ bi4

Sl 0]

B . °A= A8
- "AN+A= AV
B K109y |
- |9poN 21udbouphH (H) = ===~

00
Ol

O¢
(03
0} 7
0S
09

0L

(j4]) *'4x:2(8%)



°A= A8
"N+°A= NV

T ==

K108y | ——e

|13po 21uabouphH (H)

Ol

0'¢

o°¢

10" v

0°G

"1 4x4(8%)

(|



|El S)l"lE(lS)l

1o

(Is)|

I

——eo—— Experiment
Theory
A:V=V, +V,
B=V=Vo

200

|E

-1.0

Kr:Xe
+ |

Ar:Xe Ne:Xe

4+

—

20
~IE ()]

30

Fig 7



|4
'p
1
N
|
, A
_. o>...> ON
// 0
AN —0'¢
8x:9X N AN |
N
ax : 4Y : I N —0'¢
oX : IV : II I~
9X : N I | I /Ao.v
Kioay| ——
AT :
|I9pOW O1udbOoIpAH ——— 0¢g




9X:9X Al
ox: 43 Il
OX: 4V 1
9X: 9N : I

Kiooy| —
|9POW 1uab0IPAH ———




0l bi4

| N3
G2 02

Gl

Tt
ax:aN  ax:y x|

°A=A:8
"N+ON=AY

Kiosy ._._ —_—
|j9pO 21udb0IpAH — - —

juswiadx3

© QQ
N — O

) O O O 9 O
oM~ o O M
=1

21(Q%4] /,](0) ')

O




